genQC logo genQC
  • Overview
  • Get Started
  • Tutorials
  • API Reference
  • Research
  • Code Repository
  1. Dataset
  2. Quantum circuit dataset

API Reference

  • Modules Overview
  • Release notes

  • Benchmark
    • Compilation benchmark
  • Dataset
    • Dataset balancing
    • Cached dataset
    • Quantum circuit dataset
    • Config dataset
    • Dataset helper functions
    • Mixed cached dataset
  • Inference
    • Evaluation metrics
    • Evaluation helper
    • Sampling functions
  • Models
    • Config model
    • Frozen OpenCLIP
    • Layers
    • Position encodings
    • Conditional qc-UNet
    • Encoder for unitaries
    • Clip
      • Frozen OpenCLIP
      • Unitary CLIP
    • Embedding
      • Base embedder
      • Rotational preset embedder
    • Transformers
      • Transformers and attention
      • CirDiT - Circuit Diffusion Transformer
      • Transformers
  • Pipeline
    • Callbacks
    • Compilation Diffusion Pipeline
    • Diffusion Pipeline
    • Diffusion Pipeline Special
    • Metrics
    • Multimodal Diffusion Pipeline
    • Pipeline
    • Unitary CLIP Pipeline
  • Platform
    • Circuits dataset generation functions
    • Circuits instructions
    • Simulation backend
    • Backends
      • Base backend
      • CUDA-Q circuits backend
      • Pennylane circuits backend
      • Qiskit circuits backend
    • Tokenizer
      • Base tokenizer
      • Circuits tokenizer
      • Tensor tokenizer
  • Scheduler
    • Scheduler
    • DDIM Scheduler
    • DDPM Scheduler
    • DPM Scheduler
  • Utils
    • Async functions
    • Config loader
    • Math and algorithms
    • Miscellaneous util

On this page

  • Simple Dataset
    • CircuitsConfigDatasetConfig
    • CircuitsConfigDataset
  • Mixed Dataset
    • MixedCircuitsConfigDatasetConfig
    • MixedCircuitsConfigDataset
  • Report an issue
  • View source
  1. Dataset
  2. Quantum circuit dataset

Quantum circuit dataset

Dataset for quantum circuits.

Simple Dataset


source

CircuitsConfigDatasetConfig

 CircuitsConfigDatasetConfig (store_dict:dict, dataset_to_gpu:bool,
                              optimized:bool, random_samples:int,
                              num_of_qubits:int, min_gates:int,
                              max_gates:int, max_params:int,
                              gate_pool:list[str])

source

CircuitsConfigDataset

 CircuitsConfigDataset (device:torch.device=device(type='cpu'),
                        **parameters)

Dataset for quantum circuits, access gate_pool directly and all other paras with .params_config

init = {k:None for k in CircuitsConfigDataset.req_params}
init["gate_pool"]  = ["qiskit.circuit.library.standard_gates.h.HGate",
                      "qiskit.circuit.library.standard_gates.x.CXGate"]
init["store_dict"] = {"x":"tensor", "y":"tensor_list"}

a = CircuitsConfigDataset(**init)
a.get_config()
{'target': '__main__.CircuitsConfigDataset',
 'device': 'cpu',
 'comment': '',
 'save_path': None,
 'save_datetime': '06/01/2025 11:31:35',
 'save_type': 'safetensors',
 'params': CircuitsConfigDatasetConfig(store_dict={'x': 'tensor', 'y': 'tensor_list'}, dataset_to_gpu=None, optimized=None, random_samples=None, num_of_qubits=None, min_gates=None, max_gates=None, max_params=None, gate_pool=['qiskit.circuit.library.standard_gates.h.HGate', 'qiskit.circuit.library.standard_gates.x.CXGate'])}

Mixed Dataset


source

MixedCircuitsConfigDatasetConfig

 MixedCircuitsConfigDatasetConfig (store_dict:dict, dataset_to_gpu:bool,
                                   pad_constant:int, collate_fn:str,
                                   bucket_batch_size:int,
                                   model_scale_factor:int, optimized:bool,
                                   random_samples:int, num_of_qubits:int,
                                   min_gates:int, max_gates:int,
                                   max_params:int, gate_pool:list[str])

source

MixedCircuitsConfigDataset

 MixedCircuitsConfigDataset (device:torch.device=device(type='cpu'),
                             **parameters)

Dataset that uses multiple cached dataset and combines them with padding, either i) Bucket or ii) Max. Also provides a corresponding collate_fn for training.

Back to top
Cached dataset
Config dataset
 

Copyright 2025, Florian Fürrutter

  • Report an issue
  • View source