genQC logo genQC
  • Overview
  • Get Started
  • Tutorials
  • API Reference
  • Research
  • Code Repository
  1. Dataset
  2. Dataset balancing

API Reference

  • Modules Overview
  • Release notes

  • Benchmark
    • Compilation benchmark
  • Dataset
    • Dataset balancing
    • Cached dataset
    • Quantum circuit dataset
    • Config dataset
    • Dataset helper functions
    • Mixed cached dataset
  • Inference
    • Evaluation metrics
    • Evaluation helper
    • Sampling functions
  • Models
    • Config model
    • Frozen OpenCLIP
    • Layers
    • Position encodings
    • Conditional qc-UNet
    • Encoder for unitaries
    • Clip
      • Frozen OpenCLIP
      • Unitary CLIP
    • Embedding
      • Base embedder
      • Rotational preset embedder
    • Transformers
      • Transformers and attention
      • CirDiT - Circuit Diffusion Transformer
      • Transformers
  • Pipeline
    • Callbacks
    • Compilation Diffusion Pipeline
    • Diffusion Pipeline
    • Diffusion Pipeline Special
    • Metrics
    • Multimodal Diffusion Pipeline
    • Pipeline
    • Unitary CLIP Pipeline
  • Platform
    • Circuits dataset generation functions
    • Circuits instructions
    • Simulation backend
    • Backends
      • Base backend
      • CUDA-Q circuits backend
      • Pennylane circuits backend
      • Qiskit circuits backend
    • Tokenizer
      • Base tokenizer
      • Circuits tokenizer
      • Tensor tokenizer
  • Scheduler
    • Scheduler
    • DDIM Scheduler
    • DDPM Scheduler
    • DPM Scheduler
  • Utils
    • Async functions
    • Config loader
    • Math and algorithms
    • Miscellaneous util

On this page

  • Qircuit length balancing
    • get_tensor_gate_length
    • add_balance_fn_quantile_qc_length
  • Report an issue
  • View source
  1. Dataset
  2. Dataset balancing

Dataset balancing

Helper functions used to balance a dataset.

Qircuit length balancing


source

get_tensor_gate_length

 get_tensor_gate_length (clr_tensor:torch.Tensor, padding_token:int=0)

Returns the gate count of a tokenized circuit. Make sure you use use the correct padding_token.


source

add_balance_fn_quantile_qc_length

 add_balance_fn_quantile_qc_length
                                    (indices:Union[numpy.ndarray,torch.Ten
                                    sor],
                                    x:Union[numpy.ndarray,torch.Tensor],
                                    y:Union[numpy.ndarray,torch.Tensor],
                                    *z, padding_token:int=0,
                                    balance_quantile:float=0.5, device:tor
                                    ch.device=device(type='cpu'), quantile
                                    _length_weights:Optional[Callable[[tor
                                    ch.Tensor,torch.Tensor],torch.Tensor]]
                                    =None)

Balances according to gate length.

Back to top
Compilation benchmark
Cached dataset
 

Copyright 2025, Florian Fürrutter

  • Report an issue
  • View source